Longitudinal data analysis using the conditional empirical likelihood method
نویسندگان
چکیده
منابع مشابه
Conditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملData Fusion Using Empirical Likelihood
The authors propose a robust semi-parametric empirical likelihood method to integrate all available information from multiple samples with a common center of measurements. Two different sets of estimating equations are used to improve the classical likelihood inference on the measurement center. The proposed method does not require the knowledge of the functional forms of the probability densit...
متن کاملJoint analysis of prevalence and incidence data using conditional likelihood.
Disease prevalence is the combined result of duration, disease incidence, case fatality, and other mortality. If information is available on all these factors, and on fixed covariates such as genotypes, prevalence information can be utilized in the estimation of the effects of the covariates on disease incidence. Study cohorts that are recruited as cross-sectional samples and subsequently follo...
متن کاملGeneralized empirical likelihood methods for analyzing longitudinal data.
Efficient estimation of parameters is a major objective in analyzing longitudinal data. We propose two generalized empirical likelihood based methods that take into consideration within-subject correlations. A nonparametric version of the Wilks theorem for the limiting distributions of the empirical likelihood ratios is derived. It is shown that one of the proposed methods is locally efficient ...
متن کاملEmpirical likelihood for generalized linear models with longitudinal data
In this paper, empirical likelihood-based inference for longitudinal data within the framework of generalized linear model is investigated. The proposed procedure takes into account the within-subject correlation without involving direct estimation of nuisance parameters in the correlation matrix and retains optimal even if the working correlation structure is misspecified. The proposed approac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Statistics
سال: 2014
ISSN: 0319-5724
DOI: 10.1002/cjs.11221